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The series treated in this paper had its origin in the study or

oy

Tom!nson Fort

difference equations with varying difference interval. It is hoped

to follow in a s'ort time with a paper on this subject.

We sha’i de concerned uith series of the type

ORI N (R LU CTRMOI BN o
=

vre g =x + yl with x and y real. We shall require in addition that
0<egh(z) E(@), that h (2)—> o2 whenn —> oo and that

x + hn(z) increase with x.

T

| 1. Convergence Theorems. . e
1& e

We now give a lemma which is well known. However, the proof is
8o short that it is given as adding to the understanding of the work

which follows.

# This paper 1is a part of a general project undertaken by the author

with the support of the National Aeronautics and Space Administration.




Let e b.,’('&) = bj‘.‘l(z) - bj(z)‘

Lemma 1; Hypotheses; (1) a (2) and b (2), for all n, are defined

o0
at all points of a region , R, of the complex plane. (2) ==_ a (2)
n=1

corverges uniformly over R. (3) b (s) is uniformly bounded over R.

(L) Em'__ I ? b (s)l is uniformly bounded over R. Conclusion:
hi |

= _"a,(s) b(s)
iianz n\8) converges uniformly over R.

Proof: Using sumation by parts

nt m'+1 m

n=-1 n
I NORCREXOE = aJ:} o RO

e,
n
{nzl; 8,(s) b, () | 5 {b,,.ﬂ(z)/[:‘z:_ a |+ % 4 By /‘}% 2 ,
g!e+ue<? which proves the lemma.
Let

(5, + by (35, + By h.u(z, + B (3))

(2) bn(z) = —
(s + hy(2))(s + hy(2))...(z + h ()

-

This expression plays an important role in the discussions that
follow.

Let

(x, + by (3))(x, + hy(z ))evelx) + B (2)) .
(3) b (x) = —2 2 > . ’

(x + h(2))(x + hy(z))eee(x + h (z))




%0
Theorem I: EQ_IE;. [hn(zo)]'2 converges and O £ x, £ x then given
n=l

any positive mmbers, a and b, and a positive integer, p, there exists

an N guch that
@ || < Waxex)P+w), n>p
Proofs

{zo + hl(zo)[.lzo + hz(zo)}...qJ z, + hh(zo)
(x, + (2 ) (x, + hylz ))eeulx + b (3)))

5 [5,00)] =

(x + by (2)) (x + hy(2))eue(x + 1 (2)) "
-1 x
lﬂ + H(z)(' }Z + 5(2)‘0000’ z + hn(z)l n

2 N2 2«1/2
[ e T ) T ) o

<N bn(x) .

WA

. (X + b1(2>)...(x + hn<2))
This follows from the fact that Tz T h1(2)¥ - }z + hn(Z)i <1,

o0
and the fact that = [n (3) 172 converges.
n=l

ﬁ(x‘2 + (2 ))eenlxy + 1 (2))
(x + hl(z))o..(x + hp(z))

o
—
(o)
~
HA

{ {
(XO + hp+1 (zg)}:»ce\xo + hn\zo))

since

HA
-

{x + hpﬂ.(‘"))“”(x +h (z))



Consequently
c bT(xu + hl(zo))...(xo + l&;(zo)) N
‘bn(z)\ = c [P+ hl(z)hz(z)...hp(z)] < a(x<x P + b
o

provided N >C N(xo + b]_(zc))...(x0 + hp(xo)), c>a amd
c bl(z)h?(z)...%(z) > b. It is always possible so to choose C since
p is fixed and h (2) 2 ¢ > 0.

We have made the hypothesis that n > p which is trivial in

convergence problems.

Theorem II: bn(z) is uniformly bounded in the half plane, x > 0

This was proved incidentally in the proof of the last theorem

gince 0 < bn(x) <1

Leoma 11t |2 = % * By () = By () | < - z°‘, x>x
x-x +h (z) n+1(zo) x - X
Proofs 2
(Y'YO)
PSRN B
x-x +h .(z) - n,,(z) /1 +(n+l‘2’) hn+1(’ ))
AN \ x-x’o

L. \21/2 .-
() 7 a2

1/2



Theorem I1I: If x 2x >0, and hn+1(z) -h (z )20
oo

2
1 .
= ( W—) converges uniformly when x > Z then

mt
=_ lAbn(Z) ! is uniformly bounded over the portion of the carplex
=n

plane determined by (y - y,)/(x - x)) < a(x - xo)p + b, Here

& and b are any positive constants and p any positive integer, x > X,

Proof: From the definition

,z-s +h (z)— (z)
4 ) = et
{s+ ml(”)l

lbn(z) ‘ o
But by Theorem X
|ey(e) | < N B @)

Hence, using the previous lemma,

'Ab()(<n [3~2,+h,,(2) -nh (z)l x + h,(2)
: X =% i () = a6 ey @]

x=x,+h_(z) - h 4 (2,) b (x)

x+h, (z) n

2 =
s -wlll

A b, (x)

From this

% [4v, ()] g - ¥ l’4< ( m,ﬂ_(r)-b(x)) =
< NVJ_+(§—};‘Z) b (x) ¢ M Vl‘*(x-x)

o a(x-x)p-l-b




A+ tatx - )P + oF?

gll
alx - xo)p +b

<M

which completes the proof.

Lesma III: If s, =0, x > O'and

X hn(‘z{ '-mn(zoj <
[+ 1) = By(0)|

then |=+ B (3)T- 110} < M, where m and M are constants.

Proofs We note that |s + b (s)] - 1 (0) > 0. s follows from
the fact that x + B (s) >0+ (0). Tils is true since
x +  (s) increases with x.
[s+n(z)]- 0 (0) 2 x+n(s) - b(0)
- A

ls + n,(s) - n,(0)] s - n o)

ls + hn(s)l - hn(O) = x4+ hn(z) - hn(o) |
N2 1/2
={1+(X+hn%3)‘hn(0))} <v1+.2 <M

The conditions just given, namely, g, = 0, x>0,

‘yV(x + %(z) - hn(O)) < m, serve to define a region, S, as

follows. Let us suppose that ]hn(z) - hn(o)l has a.n upper bound g
then a sectorial region is defined by ‘y[ < nix + g). If

-

}7| s mlx + b (z) - b_(0)) then z lies in S.




Theorem IV: 4 bn(z) is uniformly bounded over the region,S, above

defined.

Proof:

Iﬂbn(s) l= (z +h (2) - hn(O)I

[#+1 (2) ]|~ |n (0)]

‘bn(z) l

|2+ n (2) -~ b (0)] <
(z+hn(z)l-lhn(0)l -

Now b (s) | < N and by Lemma III

The theorem follows.

Theorem V. If series (1) convergsg_f..zog_nd;@__igx‘);()ﬁi_t_

no
= (%-(g))z gonverges uniformly over a sectorial region, R, de-
n=1

termined by ly - yo’ (x - :ﬁ:a)"l < a(x - xo)p + b; then (1) con-
berges uniformly over R also.

Proof: This theorem is an irmediate consequence of lerma I and
theorer II and III.

Theorem VI: If (1) converges at O then it converges uniformly over

the region, §, of lemma _.’Q_I_.

Proof: Proof again is an immediate consequence of lerma I and

theorem IV.

Theorem VII: If (1) converges absolutely at z,, When x, > O then

it converges absolutely uniformly over the half plane deterrined

_tzzxg_xo.




Proof: This theorem follows frox the fact that s + hh(') is increasing

in x.

Theorem VIIIs _If (1) converges at s = s, x 2 O then it converges
at all points of the bhalf plane x > x .

The conditions on h in theorems V, VI, VII, and VIII are those in

the lermas and theorems referred to.

2. Uniqueness Theorems.

Theorem IXs If

oo
m = = # 0
=l (s + h(2))(s + By(s5))eee(s + 1 (3))

overita!nlt-plmg_f_eomez;ence,x;xogo, thonc'nzo,nsl, 25 eeo

Proof: When x becomes infinite each term approaches sero. Convergsnce

is uniform. We can assume the c's functions of h(z) but add the hypo-
c

thesis, = approaches gero when x becomes infinite.

(8) ——ie + 2___ . 3 4eee 50
5 + by (s) (s + b (2))(z + hy(s))  (z+hy (3))(m+1iy(x)) (w+By(2))

From which

(9) e + % + % +...20

2 + by(z) (z + rxf‘_,(z))(z + h3(z))



This is a scries of the same type as (8). It converges uniformly
x;xo. Let x bacome infinite and we lmrec1=0. We now begin

all over again in a familiar way and get ¢, = O and then

2

CB, ch, .-.cn, 'y

Theorem X: _(Q(s) (2(z) =0 at an infinite number of points in the

finite half plane x < x < M then L2 (2) and/or £2(2) is identically

EBro.

————

Proof: Either ) (s) ar (% (s) must have an infinite number of
finite seros. This is impossidble for an amalytic function unless
it is identically sero.



PFart II.

In this part of the paper the independent variable is real.
It is denoted by x. uematunuont&mmm%(x)u
real and positive and that b, (x) > b (x) and x + B (x) increasing
vith x also that x + b (x) >0

3. Step uwp Mwormms,

¥e considezr series (1) and assume that it {s absolutely convergent
for all wvaluss of -x oozixidered, .

Let
{eal=a,
and let
0) ()= i !
| 3L (x4 5y (x))(x + hy(x))eee(x + hJ(x))
oD a
(1) —Q—z(x) - T J

x4+ mE) 6+ hya))ees(x + by(x)

We shall carry on certain cperations on series (10) and (11). These

operations are to be precisely set forth in the theorems.

Theorem XI: If Z_ 2 "diverges then,
=1 x



11

o2
(12) £2,x) == 2&n
m=l  (x + hy(x)) (x + hy(x))eee(x + R (x))

whare
2 Qn me, +c (h(x)-bix) +e ,(h(x)-h(x))(h &) -n)+
vee + 0 (B (x) = by (x)) (N, (x) = By(x))..c(bylx) = by (x)).

1 1l
x+h1(xT =x+b2(x7+‘1’m

h,(x) - b, (x)
(x + b (x))(x + hy(x))

hz(X) - hl(‘)
(x + by(x))(x + by(x))

_ (ayx) = m ) ytx) - wy(x)
(x + By (x))(x + By(x)) (x + By(x))

Proof: let

+ s, , where

€=

In general with the same notation we have
(By(x) = by () (g(x) = By (x))ene (B g (2) = By )
(x + by (xXx + hy(x))eeelx + B, (x))

From this
g = 1 :
T ox+n(x) <1 + %) (1 + x*ﬁl(x) ) (1 + :}:ﬁhﬂx)

This approaches zerc since 5 —-(;) diverges. Consequently we have
n

¢ & &y (hy(x) - by (x))

= — + coevee +

x + by (x) x + h,(x) (x + hy(x))(x + hﬁ(x))

P
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. ¢y (hy(x) - hl(X))(:z(x) = by (x))eee(n,(x) = by (x))
(x + by(x))(x + h3(x))...(x + b (x))

+....

In precisely the same wvay we find

¢, e, °2(hL) - by (x))

+

(x + b (x)(x +by(x))  (x+ by(x))(x + hy(x)) (ﬁbz(X))(ﬂhJ(x))(x*hh(x))

cp(hy(x) = By (x))(y () = By (x))eeu (B, (2) = By (x))
(x + By(x))(x + By(x))eslx + By (x)

+ oo

X RN J +

Proceedinz in this manner

c c
- - 3
(x + By ) Gx + By(a))oe x4 By (X)) (x4 By(x))(x + Byx)) e x + gy (x))

e (b (x) - by (x)) . el(hl,]_(x) - b (x))(h +2(")‘h1(") .
(x + by(x)) (x + By(x))eealx + B, 5 (x))  Grthy(x)) (xthy(x)) e ety 5(x))

+

+ oo o

These series considered together form a double series vhich summed by rows
produces -Ql(x). This double series is absolutely convergent. To see
this do to series (11) for .Q.‘,(x) precisely what we have just done to
series (10) for -al(x). The resulting double series is of all positive
terms and can be summed to ﬂz(z) by rows. It consequently is cone
vergent. This double series is a majorant series for the series just
obtained for .D.l(x) which consequently is absolutely convergent and

can be swmmed by columns, We got the result of the theorem.

We repeat the process that we have just gone through with on

series (12). We find



ao
Ly(x) =

n-l

3 0o/(x + hy(x))(x + By(x))eualx + hpep(x))
Rore 3@, =,0, ¢, palb(@)n) + 2 (P - o(bre 3 (x)-hy(x)) (b (x)-hy (x))

teeet o (g (x)By(£))(By (X)=by(x)).. . (Bylx)eBy(x))
Proceeding in this manner we have the following theorem,

Theorem XII: ‘
Oy = g; o o/(x + BLENx + B, ((X)eealx + By (2D,
n=
whers kpn - k-l@n * 11 ® o1 Cpageea(®) = By e 4
* 11 P 2By o(x) = By (x))enu(iyx) = By (2)).
k. Step Down Theores. " :}

Theorem XIII} If

Z(x - f2 ‘:?,
. S x e hp(ﬂ (x*bp(x)(x'-hpd(ﬂ (rhp(x)(x*%, )RR W )

*eeae M
Zye B @) ey
: X+ 1(‘) (x+h l(x”(x + %(xn
l(hp-l(x) - % *Ne (x)) * an * eoe

(x + %-1("” (x + hp(x))...(x * Roena2(x))



Proof:
N } 1 . .o %_1(") - %(x)

x + %(x) x + %—1(") (x + hp(x))(x + %—1("))
1 - 1 . }1(1) - %(x)

(x+ %(x)) x + %-1(") (x + hp(x))(x + hp_l(x))

1 - 1 + %_l(x) - %“‘l(x)
(x + %(x))(x + %ﬂ(x)) xﬂb_l(x))(r'—%(x)) (rl-%.l(x))(x‘fhp(x))(n%,,,l(x))

¢ o & & » 5 o 0 o

This step down process can be continued as many times as

desired.

Theorem XIV: 1If ﬂx)umruncuonneanwite

nl(’) = E‘c} A{AJ P)
Fl Y (x+p(x) + b (x))(x + Ax) + hy(x))...(x +0(x) + hj(x))

Proof: Simply apply the & process of theorem XI.

5. Multiplication Theorem.

Theorem XV Let

oo
Ll(x) = fo 2 4 /(x + by (x))(x + By(x))eue(x + hn+1("))

and

= 0o

{2x) = iﬁ By /(x + By X)) (x + By(x))eee(x + B, (x))
n.

then
- <0 w

(13) Q(x)ﬁ(X) = % % bj J+1(Vn/(x + hj+1)..°(x + hjm‘!'l)
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Proof: By theorle .

N(x) = -
x i ! (x + hl(x))o..(x + hh_._l(x))
o
Nx) == o¥n 1
=0 (x + bz(Z))oc.(x + hn.'_z(x))
Qu) == 1
g 3@,, (x + By(x))ees(x + B 1 (x))
o0
o 1
& %,1?11 (x+h (8))...(x+h (s))

We now multiply £1(x) by each tem of L1 (x) as indicated and add
o0
hl. i & 1
x + h (x) 20 278 (x4 hy(x))eee(x + b (x))
hl hzx eselx hn+21

-

b .
4 = 3@}1 1
(x + h’l(x)(x + hy(x) n=0 (x + h3(x))...(x + hn+3(x))

b oo

3 1

=
(x + by (x))(x + hy(x))(x + h3(x)) n=0 h@ (x + hh(x))---(x + bn-rb("))

1
(x + hl(x))...,(x + hJ(x)) n=0 J+1@n (x + hﬁl(x))..o(x + hm-j-l-l(x))




The double series which appears here can be summed by columns in as
much as each row is absolutely convergent and it can be smmed by
rows., This follows from the fact that each of the series for

{0 (s) converges absolutely. It is interesting to note that g occurs
in the mmerators of the series (13) only through h. Consequently

if h is a constant we can write
—_ 22 A
&) {lx) = = n

1l (x+h)(x+h)o(x+ h)

the A's are constant, If t\! = n we have ordimary factorial series,
as is alresdy knowm,
We are careful to note timt the product converges uniformly

over the common region of convergence of the two factors.
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